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2022-10-29 

第２章 エクセル VBA による地球の極運動と章動の検討 

 

はじめに 

 地球の極運動は章動と別物のように言われることが多いが、現実には極運動と章動は不

可分の関係にある。 

従って、本稿の地球のシミュレーションプログラムもそのような構成となる。 

ここでは、第３章のコマのエクセル VBA を地球用に改編して、極運動と章動の原理的な関

係を求める。 

 

１ 地球の対称軸 e3の回転半径と角運動量 

 第６章で述べたように、無重力状態において地球の角速度ωは対称軸 e3の回りを角速度

Ωで回転している。 

地球の場合は I3＞Iとなるので、その様子は図 6.1、図 6.2のようになる。 

地球の慣性モーメント（文献 1）は 

極軸まわり I3=8.0359×1037 kgm2 、 赤道まわり I=8.0096×1037 kgm2  である。 

 

  

 

 

図 6.1 回転座標系（対称軸 e3）から見る 

角速度ベクトルωの動き 

図 6.2 物体円錐と空間円錐の関係 

I3＞I（α＞θr）のケース 

 

ここで瞬間自転軸ωが地球の極を一周するに要する日数 Tを求めると 

𝑇 = 
2𝜋

Ω
= (

2𝜋

𝜔3
)

𝐼

(𝐼3−𝐼)
  (6.1)式となる。 

ω3を地球の自転の角速度とすると ω3 = 7.292×10-5rad/s となる。（文献 1） 

上式の(2π/ω3)は地球の自転周期で約 1 日、正確には恒星日の 23 時間 56 分 4.1秒であ

る。地球の慣性モーメント I3、I を(6.1)式に代入すると、T=303.7≒305 日が算出でき

る。これはオイラーが 1736 年に発表したオイラー周期 Tと呼ばれるものである。 
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それはその後、チャンドラーによって約 430 日のチャンドラー周期に補正された。 

305日と 430日の差はオイラーが地球を剛体としたためで、弾性体とすれば観測値にほぼ

合致することが分かった。次の図 6.3は極運動の観測結果を示したものである。 

 

 

左図は 1992年 1月から 1995年 7月ま

での北極の観測結果である。 

座標は角度の″で表示。 

0.1″は地球表面の距離に換算すると

約 3m である。 

瞬間自転軸は左回りに回転しているこ

とがわかるが、真円からは多少のずれ

がある。 

尚、図中の IRPは基準極原点と呼ばれ

ている地球上の固定点である。 

図 6.3 地球の瞬間自転軸の地球に対する運動の様子（文献 2） 

 

図のデータが真円からずれているのは、大気や水の質量分布の季節的変動による年周変化

やゆっくりと長期間にわたって変動する成分などが含まれているためで、これらの解明が

地球物理学の重要な課題となっている。 

今仮に、図 6.3の平均直径を 0.3″と見積もると、それは距離に換算して直径約 9ｍとな

る。これは物体円錐の直径と見なされ、図 6.2におけるαはα=0.15″となる。 

L と対称軸 e3との角度をθrとすると、 

  tan𝜃𝑟 =
𝐼𝐴

𝐼3𝜔3
=

𝐿
ｒ

𝐿3
= 𝑅𝐿 =

𝐼

𝐼3
tan𝛼 (6.17)式となる。 

ここで Lrは図 6.1のω1とω2を合成した角速度Ａに対応した付加的角運動量で Lr=IA で定

義される。RLは Lr の L3に対する比で Lr/ L3である。 

上式にα=0.15″を代入して計算すると 

 tanθr=(8.0096/8.0359)tanα=0.9967×7.272×10-7=7.248×10-7   θr=0.1495″となる。 

また L3=I3ω3=8.0359×1037 kgm2×7.292×10-5rad/s =5.860×1033kgm2/s 

付加的角運動量 Lr は、Lr= L3tan𝜃𝑟=5.860×1033 kgm2  ×7.248×10-7 =4.247 × 1027 kgm2 
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2 Excel VBA 入力画面 

 図 3.1 にエクセル入力画面を、３章を改編する形で示す。 

用語や記号の詳細については、１～３章を参照願いたい。 

 

図 7.1 エクセル入力画面 

注 

１入力画面の数字が記載されたセルの位置は、VBA とリンクしているので位置を変えない

こと。 

２出力は J～Y 列の 1 行目から B6 の回数分まで行われる。 

３グラフは J～Y 列のアルファベットの部分をクリックすれば範囲指定ができる。 

 

座標系とグラフ 

慣例に従い黄道座標とし、これまでのコマの z 軸を黄道面に垂直な軸（黄道の北極）とす

る。従って、コマの傾斜角の初期値であるθ1 は黄道傾斜角 23.4°となる。 

θ2 は地球に働く潮汐偶力が地軸を立てるように作用するためθ2＜θ1 となる。 

これはコマの重力モーメントとは逆の方向である。 

章動の変化量は角度の ″になるため、グラフの目盛りは変化量のみを″単位で表示する。 
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＜図 3.1 エクセル入力画面の解説＞ 

[A1：C6 ブロック] 数値積分の計算条件 

積分区間は B2 の 0 秒から B3 の 258492 秒の間である。 

これは C3 の恒星日を秒に換算したもので 3 恒星日に相当する。 

恒星日は自由に変更することができる。 

B４は数値積分の刻み幅で 10 秒である。これも特に細かく計算したいところでは刻み幅を

短くすることができる。 

B5 の出力幅は、グラフのプロット数に相当するもので計算回数の 1/10 とした。 

B6 のエクセル行数は、B5 に対応した計算出力のエクセル画面上の最終行数を示す。 

関数は小数点以下切り上げの=ROUNDUP(B3/B4/B5,0)を使用した。 

 

[A8：B13 ブロック] 地球の基本条件 

B9～B13 は地球の基本条件を示すもので計算の基本条件を示すものである。 

地球の慣性モーメント（赤道まわり）I          8.0096×1037kgm2 

地球の慣性モーメント（極軸まわり）I3      8.0359×1037kgm2 

地球の自転の角速度ω3                                      7.292×10-5rad/s 

地球の角運動量 L3   5.860×1033kgm2/s 

L3= I3ω3= 8.0359×1037kgm2×7.292×10-5rad/s=5.860×1033kgm2/s  

 

潮汐偶力の平均値 1.793×1022Nm 

地球は宇宙空間で重心を支点として回転するコマに見立てることができる。 

そのためコマのような重力モーメントはかからないが、第Ⅰ部「これならわかる地球の歳差

運動」にて述べたように月と太陽によると潮汐偶力がかかる。 

1.793×1022Nm は第Ⅰ部「これならわかる地球の歳差運動」の精密な計算値を採用 

 

[A15：B18 ブロック] 地球の運動 

C16は黄道傾斜角θ１（初期値）23.4°、B16 はこれを rad に換算。 

 

付加的角運動量 La 1.692×1027kgm2/s   

 極運動の直径をθd=2×θr =0.3″に設定、D17 により可変可能。 

  計算式 La= L3tan(θd/2)・sinθ1  (7.1)式 

 C12 は L3tan(θd/2)=5.860×1033×tan(0.3/2/3600)=4.262×1027 kgm2/s 

   B12 はこれに sinθ1=sin23.4°を乗じて La を算出したもの。 

 VBA にはこれが入力されるので、直接入力も可能。 
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Mt 潮汐偶力の平均値 C18 は 1.793×1022 Nm であるが、これは月と太陽より周期的に 

０～2 倍まで変動する。（第Ⅰ部「これならわかる地球の歳差運動」参照） 

D16 はこのための係数で自由に変化させることができる。 

 

[D1：E6 ブロック] 初期条件 

それぞれ時間 t=0 における値で、t0 時間 0s、x0(θ1)コマの傾斜角 23.4°の rad 表示であ

る。v0(θdot)は、コマの傾斜角の角速度𝜃̇で初期値は 0rad/s である。 

これは、コマの傾斜角θの初期値が章動の波高値になることによる。 

また p0 は歳差運動φの初期位置で 0rad、u0 はコマの回転角𝜑の初期位置で 0rad に設定し

た。 

 

[D9：E11 ブロック]計算実行ボタンと計算カウンター 

E11 に計算のステップがリアルタイムで表示される。 

その上にあるのは、計算実行ボタン 

 

[G1：I17 ブロック] 計算結果グラフ 

エクセルの J 列～Y 列のところに B6 に対応した計算結果が表示される。 

列の後ろの数字はエクセル画面の列番である。 

任意の列を組み合わせて、グラフを作成することができる。 

時間 t は秒。コマの傾斜角の変位 θ、角速度𝜃̇、角加速度𝜃̈、歳差の変位φ、角速度∅̇は rad

で表示。次のφ、θ、𝜃̇、∅̇は度で表示。 

続いて∅̇とコマの速度𝜑̇は秒あたりの回転数で表示した。 

次のコマ回転とあるのは B3 の計算時間に対応したコマの総回転数𝜑である。 

次の加速度φ2dot とあるのは歳差の角加速度∅̈、次のコマ角加速度とあるのはコマの角加速

度𝜑̈で、rad で表示してある。 

最後の G16 と G17 はφ、θ を正距方位図で示したもので、角度の単位は ″である。 

（詳細第６章参照） 
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3 地球の極運動と章動のエクセル VBA 

 

Public An, L3, Ir, La, w3, mgzr As Double 

Sub tikyu() 'T.Egashira 地球正距方位図付き 2022 

 

Dim init, ed, h, h2, x0, v0, p0, u0, kx(4), kv(4), kp(4), ku(4), d3 As Double 

Dim i, j As Integer 

init = Cells(2, 2): ed = Cells(3, 2): h = Cells(4, 2): h2 = Cells(5, 2) 

 

'定数 

An = Cells(16, 2): L3 = Cells(12, 2): Ir = Cells(9, 2): La = Cells(17, 2): w3 = 

Cells(11, 2): Mt = Cells(18, 2) 

 

'初期値 

x0 = Cells(3, 5): v0 = Cells(4, 5): x = x0: v = v0: t = init 

p0 = Cells(5, 5): p = p0 'φ=0:u0 = Cells(6, 5): u = u0 'コマの回転数の初期値 0 

e11 = Cells(16, 3) 

k = F2(t, x0, v0) 'θ2dot の初期値 

g = F3(t, x0) 'φdot の初期値 

q = F4(t, x0, g) 'コマの角速度の初期値 

a = F5(v0, x0) 'φ2dot の初期値 

b = F6(g, v0, x0, a) 'コマの角加速度の初期値 

 

Range("J:Y").ClearContents 'J 列～Y列の数値を clearする 

 

For i = 0 To ((ed - init) / h) 

j = 1 + i / h2 

Cells(11, 5) = i 

If i Mod h2 = 0 Then 

Cells(j, 10) = t: Cells(j, 11) = x: Cells(j, 12) = v 

Cells(j, 13) = k: Cells(j, 14) = p: Cells(j, 15) = g: Cells(j, 19) = g / 

6.2831853: Cells(j, 20) = q / 6.2831853: Cells(j, 21) = u / 6.2831853: Cells(j, 

22) = a: Cells(j, 23) = b 

Cells(j, 16) = Application.WorksheetFunction.Degrees(p) * 3600 

Cells(j, 17) = Application.WorksheetFunction.Degrees(x) * 3600 - e11 * 3600 

Cells(j, 18) = Application.WorksheetFunction.Degrees(v) 
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d1 = Application.WorksheetFunction.Acos(Cos(Cells(j, 11)) * Cos(Cells(16, 2) + 

0.000001) + Sin(Cells(j, 11)) * Sin((Cells(16, 2) + 0.000001)) * Cos(Cells(j, 

14))) '正距方位図 距離（rad） 

c = Application.WorksheetFunction.Asin(Sin((Cells(j, 11))) * Sin(Cells(j, 14)) / 

Sin(d1))  '正距方位図 方位角（rad） 

Cells(j, 24) = Application.WorksheetFunction.Degrees(d1 * Sin(c)) * 3600 '正距方

位図 φ座標（度） 

Cells(j, 25) = -(Application.WorksheetFunction.Degrees(d1 * Cos(c)) * 3600 - 

0.206) '正距方位図 θ座標（度）補正値-0.206 

End If 

 

kx(1) = h * F1(t, x, v) 

kv(1) = h * F2(t, x, v) 

kp(1) = h * F3(t, x) 

ku(1) = h * F4(t, x, kp(1) / h) 

kx(2) = h * F1(t + h / 2, x + kx(1) / 2, v + kv(1) / 2) 

kv(2) = h * F2(t + h / 2, x + kx(1) / 2, v + kv(1) / 2) 

kp(2) = h * F3(t + h / 2, x + kx(1) / 2) 

ku(2) = h * F4(t + h / 2, x + kx(1) / 2, kp(2) / h) 

 

kx(3) = h * F1(t + h / 2, x + kx(2) / 2, v + kv(2) / 2) 

kv(3) = h * F2(t + h / 2, x + kx(2) / 2, v + kv(2) / 2) 

kp(3) = h * F3(t + h / 2, x + kx(2) / 2) 

ku(3) = h * F4(t + h / 2, x + kx(2) / 2, kp(3) / h) 

 

kx(4) = h * F1(t + h, x + kx(3), v + kv(3)) 

kv(4) = h * F2(t + h, x + kx(3), v + kv(3)) 

kp(4) = h * F3(t + h, x + kx(3)) 

ku(4) = h * F4(t + h, x + kx(3), kp(4) / h) 

 

nx = x + (kx(1) + 2 * kx(2) + 2 * kx(3) + kx(4)) / 6 

nv = v + (kv(1) + 2 * kv(2) + 2 * kv(3) + kv(4)) / 6 

np = p + (kp(1) + 2 * kp(2) + 2 * kp(3) + kp(4)) / 6 

nu = u + (ku(1) + 2 * ku(2) + 2 * ku(3) + ku(4)) / 6 

nt = t + h 
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t = nt: x = nx: v = nv: 

nk = F2(t, nx, nv): ng = F3(t, nx): nq = F4(t, nx, ng): 

k = nk: g = ng: p = np: q = nq: u = nu: a = na: b = nb 

na = F5(nv, nx): nb = F6(ng, nv, nx, na) 

Next 

End Sub 

 

Function F1(ByVal t As Double, ByVal x As Double, ByVal v As Double) As Double 

F1 = v 'θdot 

End Function 

 

Function F2(ByVal t As Double, ByVal x As Double, ByVal v As Double) As Double 

F2 = (-Mt - ((La + L3 * Cos(An) - L3 * Cos(x)) / Sin(x) ^ 2) * (L3 - ((La + L3 * 

Cos(An) - L3 * Cos(x)) / Sin(x) ^ 2) * Cos(x)) * Sin(x) / Ir) / Ir 'θ2dot 

End Function 

 

Function F3(ByVal t As Double, ByVal x As Double) As Double 

F3 = (La + L3 * Cos(An) - L3 * Cos(x)) / (Ir * (Sin(x) ^ 2)) 'φdot 

End Function 

 

Function F4(ByVal t As Double, ByVal x As Double, ByVal g As Double) As Double 

F4 = w3 - g * Cos(x) 'コマの角速度 

End Function 

 

Function F5(ByVal v As Double, ByVal x As Double) As Double 

F5 = (v / (Ir * Sin(x) ^ 3)) * (L3 * (1 + Cos(x) ^ 2) - 2 * (L3 * Cos(An) + La) 

* Cos(x)) 'φ2dot 

End Function 

 

Function F6(ByVal g As Double, ByVal v As Double, ByVal x As Double, ByVal a As 

Double) As Double 

F6 = g * v * Sin(x) - a * Cos(x) 'コマの角加速度 

End Function 
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4 プログラム解説 

プログラムの計算は 4 次精度ルンゲ・クッタ法にて実行する。 

ルンゲクッタ法については下記のサイトがわかりやすい。 

「数値計算を使って常微分方程式を解く～ルンゲクッタ法の解説～」 

http://shimaphoto03.com/science/rk-method/ 

 

F1 = v 'θdot（地球の黄道傾斜角 θ の角速度𝜃̇） 

 

F2 = (-Mt - ((La + L3 * Cos(An) - L3 * Cos(x)) / Sin(x) ^ 2) * _ 

(L3 - ((La + L3 * Cos(An) - L3 * Cos(x)) / Sin(x) ^ 2) * Cos(x)) * _ 

Sin(x) / Ir) / Ir 'θ2dot 

  x=θ An=θ1（初期条件におけるコマの軸の傾斜角 定数） 

  角加速度𝜃̈を導く(2.2)式をコード化したもの。 

𝜃̈ = − (
𝐿3

𝐼
)

2

{(
(𝑐𝑜𝑠𝜃1 + 𝑧) − 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
) (1 − (

(𝑐𝑜𝑠𝜃1 + 𝑧) − 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
) 𝑐𝑜𝑠𝜃) 𝑠𝑖𝑛𝜃 −

1

𝑆
(
𝑔𝑧

𝑔
)𝑠𝑖𝑛𝜃}  (2.2)式 

上式の最後の項に着目し演算を行うと𝜃̈ = − (
𝐿3

𝐼
)

2
{・・・ −

1

𝑆
(

𝑔𝑧

𝑔
)𝑠𝑖𝑛𝜃} = 𝑚𝑔𝑧𝑟𝑠𝑖𝑛𝜃/𝐼 となる。 

𝑚𝑔𝑧𝑟𝑠𝑖𝑛𝜃は重力モーメントであることがわかる。 

地球の場合、これが潮汐による偶力 Mt となる。方向は地軸を立てるように働くことからコマと

は逆になる。 

 

F3 = (La + L3 * Cos(An) - L3 * Cos(x)) / (Ir * (Sin(x) ^ 2)) 'φdot 

  歳差運動の角速度∅̇を導く(2.1)式をコード化したもの。 

∅̇ =
1

Isin2θ
( LZ − L3cosθ）  (2.1)式 

F4 =w3 -g * Cos(x) 'ω3dot w3=𝜔3（安定度 S より求まる𝜔3 定数） g= ∅̇ 

  コマの回転速度𝜑̇を求める式𝜑̇=𝜔3-∅̇cos𝜃 (1.2)式 をコード化したもの。 

 

F5 = (v / (Ir * Sin(x) ^ 3)) * (L3 * (1 + Cos(x) ^ 2) - 2 * (L3 * Cos(An) + La) * 

Cos(x)) 'φ2dot 歳差の角加速度∅̈を求める式 

∅̈ =
𝜃̇

Isin3θ
(L3(1 + cos2θ) − 2 LZ cosθ）  (2.25)式をコード化したもの。 

 

F6 = g * v * Sin(x) - a * Cos(x) 'コマの角加速度を求める式 

𝜑̈ =∅̇𝜃̇𝑠𝑖𝑛𝜃-∅̈cosθ    (2.25)式をコード化したもの。 

 

http://shimaphoto03.com/science/rk-method/
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以下はθとφを正距方位図で表現するための数式である。（詳細第６章参考 3参照） 

 

d1 = Application.WorksheetFunction.Acos(Cos(Cells(j, 11)) * Cos(Cells(16, 2) + 

0.000001) + Sin(Cells(j, 11)) * Sin((Cells(16, 2) + 0.000001)) * Cos(Cells(j, 

14))) '正距方位図 距離（rad） 

 正距方位図の距離を求める(6.45)式をコード化したもの。 

𝑐𝑜𝑠𝑑 = 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 + 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(∅2 − ∅1)   

d1は初期値θ1の黄道傾斜角 Cells(16, 2)=23.4°の距離であるが、d1=0になると次の

方位角が 0/0 となり計算できないため 0.000001 だけずらしてある。 

 

c = Application.WorksheetFunction.Asin(Sin((Cells(j, 11))) * Sin(Cells(j, 14)) / 

Sin(d1))  '正距方位図 方位角（rad） 

 分母に Sin(d1)があることに注意。 

 

Cells(j, 24) = Application.WorksheetFunction.Degrees(d1 * Sin(c)) * 3600 '正距方

位図 φ座標（度） 

 

Cells(j, 25) = -(Application.WorksheetFunction.Degrees(d1 * Cos(c)) * 3600 - 

0.206) '正距方位図 θ座標（度）補正値-0.206 

-0.206は 0.000001 だけずらしたことにより、グラフが移動するのを補正したもの。 

 これにより、初期値θ1は 23.4°に設定される。 

 グラフのθは初期値θ1からの変位を示している。 
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5 計算結果 

 シミュレーションにより様々な結果が得られるが、ここでは代表的な特性である 

θ（章動の変位）とφ（歳差の変位）を示す。 

計算時間 ３恒星日 縦軸θ 横軸φ 角度の単位は ″ 

縦軸のθは初期値 23.4°からの変位を ″で示している。 

グラフは地軸の立ち上がり（黄道傾斜角の減少）をイメージして縦軸を反転させている。 

偶力の働かない状態では角運動量ベクトルは座標(0,0.15)の位置にあって不動である。 

 

  

偶力０の時は楕円となる、 

橙線は図形の上下（θ）の対称軸を示す。 

正距方位図は真円 直径 0.3″ 

0.3″地球上の距離にして約 9m 

 

 

偶力 1.793×1022Nm（平均値） 

角運動量ベクトルは偶力により上下左右に動いているがその平均位置は橙の中央線となる。 

角運動量ベクトルは歳差により 1 恒星日につき 1.37″左にシフトしていることがわかる。 

これは、地球の北極側から見て歳差が右回転していることを示している。 

（注）分点の歳差運動速度 50.291″/年=7.7260×10-12rad/s（文献１）   

 7.7260×10-12×(180/π) ×3600×86164.10s(恒星日)=1.373″/恒星日 
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偶力 1.793×1022Nm×２（平均値の２倍） 

 歳差速度は偶力にほぼ比例するので約 2.746″/恒星日となる。 

第Ⅰ部「これならわかる地球の歳差運動」(11式)参照 
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